
Promises and
pitfalls of
sandboxes

“Multiple speed bumps don’t make
a wall” (TT)

Robert Swiecki (expressing his own opinions here)
Confidence, Kraków 2017

But why?
● Known to be broken services containment (e.g. image converters)
● Hardening of services of a relatively good quality (e.g ISC bind)

○ also for resource limitation
○ fuzzing
○ gcc as a service?

● Cloud: VPSes
● IaaS: Infrastructure as a Service
● SaaS: Sandbox as a Service (e.g. hiring pipelines for coders)
● Capture The Flag (CTF) competitions
● Malware research
● Reverse Engineering
● ...

● Layers of defense

KVM or CPU/Hardware

OS/Userland isolation (with CPU/MMU help)

OS/FS/PID permissions/capabilities

Orthogonality/Layering #1

NS / SW-Sandbox

RuntimePayload

Buggy CPU or GFX driver

OS/Userland isolation (with CPU/MMU help)

OS/FS/PID permissions/capabilities

Orthogonality/Layering #2

NS / SW-Sandbox

RuntimePayload

Orthogonality/Layering #3

Runtime hardening
● ASLR/PIE/NX-stack/CFI/Stack-protector/Fortify-Source

○ Good: Typical CPU/mem penalty <5%
○ Bad: By-passable with memory leaks

● ASAN/MSAN/UBSAN
○ Good: Truly effective at finding security problems
○ Bad: Not security features, can even compromise security

ASAN_OPTIONS='verbosity=2:log_path=foo' ./setuid

Legacy mechanisms (rlimits, cgroups)

● RLimits: Quite basic
○ Can limit VM size of a process, number of open file-descriptors, and a few more things
○ Per-process only, with the exception of RLIMIT_NPROC

● Cgroups: Nicer
○ Per-process, but cumulative resource use and inheritable
○ Confusing design (via multiple /sys files)

Legacy mechanisms (chroot) #1

● Popular during 90’s
○ Good: Easy concept to understand
○ Bad: Only for root (root-equivalent capability), by-passable

mkdir("abc", 0755);
chroot("abc");
chdir("../../../../../../../../..");

(also: namespaces - CLONE_NEWUSER|CLONE_NEWNS)

Legacy mechanisms (chroot) #2

● Doesn’t compartmentalize other aspects of the OS

1. ptrace(PTRACE_ATTACH, <pid_outside_chroot>, 0, 0);

2. process_vm_writev(<pid_outside_chroot>);

3. socket(AF_UNIX),
connect(abstract_socket_namespace_to_a_broker)

Legacy mechanisms (chroot) #3

● Reduces kernel attack surface minimally only (incl. /dev)

● The FUTEX test

Linux Kernel Futex Local Privilege Escalation (CVE-2014-3153)

The futex_requeue function in kernel/futex.c in the Linux kernel through 3.14.5 does not
ensure that calls have two different futex addresses, which allows local users to gain
privileges via a crafted FUTEX_REQUEUE command that facilitates unsafe waiter modification.

Legacy mechanisms (capabilities)
● Interesting idea (power-less root)
● Not really used (with exceptions, like ‘ping’)

○ Messy list of capabilities (>60) - require good understanding of interactions within Linux

● Many capabilities are root-equivalent
● Not for regular users (for root only)

$ man 7 capabilities
 CAP_SYS_CHROOT
 Use chroot(2)

$ ln /bin/su /tmp/chroot/su
$ chroot /tmp/chroot
$ /su

http://man7.org/linux/man-pages/man2/chroot.2.html
http://man7.org/linux/man-pages/man2/chroot.2.html

SW/CPU Emulators
● Good: probably no good sides of SW/CPU emulators
● Bad:

○ Slow (faster with JIT)

○ Enormous attack surface: CPU and HW

○ Additional services: Printing interfaces, Network NAT/Bridges

● Truly bad history of security vulnerabilities:
○ Venom CVE-2015-3456

○ Kostya Kortchinsky’s printer service flaw VMSA-2015-0004

○ Bugs in VGA, ETH, USB emulation ...

Ptrace #1
● Debugging interface, not a security one
● Good: Surprisingly effective (starting with systrace by N.Provos)
● Bad:

○ slow -> context switches
○ full of security bugs itself
○ messy, inconsistent behavior between different kernel versions

pid: syscall(syscall_no, arg0, arg1, ...)
ptracer: ptrace(PTRACE_SYSCALL, pid, 0, 0);
another process/thread: kill(pid, SIGKILL)

Ptrace #2

bool is_entry;

for (;;) {
 int pid = wait(&status);
 …
 if (WIFSTOPPED(status) &&
 WSTOPSIG(status) == SIGTRAP) {
 is_entry = !is_entry;
 if (is_entry) {

check_syscall();
 }
 }
}

int main() {
syscall1();
asm(“int3”);
syscall2();

}

Ptracer Tracee

rt_sigreturn changes orig_eax to -1

Since Linux 2.4.6

PTRACE_O_TRACESYSGOOD

Ptrace #3

Ptracer

Process (Group) - Common VM

Thread #1 - syscall(__NR_open, “res.txt”)

Thread #2: “res.txt” -> “/etc/passwd”

Thread #3

Thread #4

Kernel

Solution:R/O Maps??

Ptrace #4

Ptracer

Process #1

Process/Thread #2

Fork, VFork, Clone
?

1. Modify fork/vfork -> clone(CLONE_TRACE)
2. PTRACE_O_TRACEFORK,PTRACE_O_TRACEVFORK,PTRACE_O_TRAC

ECLONE (v. 2.5)

… unless clone(CLONE_UNTRACED) is used -> remove the flag, or
invoke the syscall violation procedure

Ptrace #5
Ptracer Process

● If ptracer dies -> no more sandboxing
● Since v.3.8 -> PTRACE_O_EXITKILL

● Multitude of other problems
○ Unclear SIGSTOP semantics (thread stop, thread group stop)
○ Spurious SIGTRAP events
○ Emulation of process stop state (PTRACE_LISTEN)
○ ...

Ptracer (dies) Process

Ptrace #6
● Different syscall tables (e.g. i386 vs x86-64)

● No easy way to differentiate between 32/64-bit syscall tables from
ptrace()

○ return value from ptrace(PTRACE_GETREGSET) returns info about bitness of the process
bitness, and not about the syscall table used

○ it’s possible to fetch syscall-inducing instruction (int 0x80 vs syscall vs sysenter) but
TOCTOU.

○ Checking the CS segment register might be inconclusive

#define __NR_restart_syscall 0
#define __NR_exit 1
#define __NR_fork 2

#define __NR_read 0
#define __NR_write 1
#define __NR_close 2

Native Client (NaCL) #1
● Based on the Russ Cox’ and Bryan Ford’s idea from vx32
● User-level sandboxing, makes use of custom ELF loader/verifier and CPU

segmentation (modify_ldt() on i386) and large mappings (non i386)

Linux process

NaCL jail
Trusted stub /

Runtime
Service

OS

Native Client (NaCL) #2
● limited subset of x86-32, x86-64 and ARM
● SFI - Software Fault Isolation, DFI/CFI - Data/Control Flow Integrity
● naclcall, nacljmp, naclret
● Possible to change CFI (func ptrs), but not to escape the jail

nacljmp eax -> and eax,0xffffffe0
 jmp eax

nacljmp %eXX,%rZP -> and $-32,%eXX

 add %rZP,%rXX

 jmp *%rXX

Native Client (NaCL) #3
● Good

○ Quite effective & rather fast (5-10% slow-down)
○ Based on CPU instruction whitelists
○ Statically pre-verified
○ Ability to apply an external syscall sandbox (e.g. ptrace or seccomp-bpf based)

● Bad
○ Writing safe trusted stubs (trampolines) requires great deal of work and attention
○ The whole process is not very straightforward (custom compilers/SDK/gdb)
○ Depends on perfect implementation of white-listed CPU instructions (CPU errata)
○ Lots of restrictions

■ No dynamic/self-modifying/JIT code
■ No assembler inlines
■ No direct access to syscalls/FS/Net

KVM

Syscall SandboxNamespace container (Net,
Pid, Fs)

Native Client (NaCL) #4

Linux process

NaCL jail
Trusted stub /

Runtime
Service

CPU?

Seccomp (v1) #1

read write exit sigreturn

● Neat idea, but turned out to be immensely hard to work with
● Required brokers for resources, but nothing can be done for memory

management
● Chromium Legacy Seccomp Sandbox

○ One of the most complex implementations out there

Seccomp (v1) #2
One-process Seccomp-v1 Sandbox

Process (thread group)

Thread #1
Payload
Seccomp mode 1

Thread #2
Resource broker
No seccompIPC

(mem)

Resource brokering

Sandboxed process Unsandboxed broker

RPC
AF_UNIX

recvmsg
sendmsg

Resources are File-Descriptors (with exceptions)
ptrace/seccomp-bpf (but not seccomp v1)

Seccomp-bpf #1
● There were a few ideas about pushing syscall evaluators into kernel

before (e.g. in the perf’s subsystem - ftrace)
● Authors came up with two ideas:

○ Reusing BPF - Berkeley Packet Filter(s) VM
○ Letting the userland to create the full evaluator operating on a simple struct

struct seccomp_data {
 int nr;
 __u32 arch; /* NO PID and TID!!! */
 __u64 instruction_pointer;
 __u64 args[6];
};

Seccomp-bpf #2
SECCOMP_RET_KILL /* kill the task immediately */
SECCOMP_RET_TRAP /* disallow and force a SIGSYS */
SECCOMP_RET_ERRNO /* returns an errno */
SECCOMP_RET_TRACE /* pass to a tracer or disallow */
SECCOMP_RET_ALLOW /* allow */

● SECCOMP_RET_TRACE - no tracer → syscall disallowed

● If multiple filters - all evaluated, and the “worst” return value wins

● No loops!

Seccomp-bpf #3
struct sock_filter {
 uint16_t code; /* the opcode */
 uint8_t jt; /* if true: jump displacement */
 uint8_t jf; /* if false: jump displacement */
 uint32_t k; /* immediate operand */
};

/* load the syscall number */
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, offsetof(struct seccomp_data, nr)),
/* allow read() */
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, SYS_read, 0, 1),
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW)
/* deny anything else */
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL)

Seccomp-bpf #4
VALIDATE_ARCHITECTURE,

LOAD_SYSCALL_NR,
SYSCALL(__NR_exit, ALLOW),
SYSCALL(__NR_exit_group, ALLOW),
SYSCALL(__NR_write, JUMP(&l,
write_fd)),
SYSCALL(__NR_read, JUMP(&l,
read)),
DENY,

LABEL(&l, read),
ARG(0),
...

...
JNE(STDIN_FILENO, DENY),
ARG(1),
JNE(buf, DENY),

ARG(2),
JGE(sizeof(buf), DENY),
ALLOW,

LABEL(&l, write_fd),
ARG(0),
JEQ(STDOUT_FILENO, JUMP(&l, w_buf)),
JEQ(STDERR_FILENO, JUMP(&l, w_buf)),
DENY,

Seccomp-bpf #5
● Kafel (config language)
#define mysyscall -1
POLICY sample {
 ALLOW {
 kill(pid, sig) {
 pid == 1 && sig == SIGKILL
 }
 mysyscall(arg1, myarg2) {
 arg1 == 42 &&
 myarg2 != 42
 }
 }
}
USE sample DEFAULT KILL

● Chromium BPF-DSL (C++ API)
EvaluateSyscall(int sysno) const OVERRIDE
{
 if (sysno == __NR_socketpair) {
 const Arg<int> domain(0), type(1)
 return If(domain == AF_UNIX &&
 (type == SOCK_STREAM ||
 type == SOCK_DGRAM), Error(EPERM)).
 Else(Error(EINVAL));
 }
 return Allow();
}

Seccomp-bpf #6
● Implementers tend to forget to check the (syscall) architecture in use

struct sock_filter filter[] = {
VALIDATE_ARCHITECTURE,

● Seccomp-bpf cannot check user-land arguments (FS paths, connect())
○ Use ptrace() or namespaces

syscall(__NR_open, “/etc/passwd”, O_RDONLY);

● Decompiled seccomp-bpf code is rather unreadable (for verification)
● Syscalls vary between architectures (no “one policy for all”), OpenSSH

Namespaces #1
● Concept borrowed from Plan9 (from outer space)
● Some aspects of the OS can be unshared from other processes

○ Uids, Hostname, Fs tree, Net context, Pid tree, Cgroups…

● Since ~3.16 it’s possible, with CLONE_NEWUSER, to unshare context for
an unprivileged user

○ This enable huge attack surface, many priv-esc’s in the past
■ Access to raw sockets for various protocols
■ Ability to mount some filesystems (bugs in overlayfs)
■ Chroot escape trick?
■ Quite complex semantics wrt clone flag exclusion (e.g. no

CLONE_THREAD|CLONE_NEWNS)
○ Can be disabled with kernel patches

Namespaces #2

Process
Chroot =

/

Chroot = /

clone(CLONE_NEWUSER
| CLONE_THREAD|
CLONE_NEWNS)

O-UID = 1337

O-UID = 1337
I-UID = 0

Chroot = /sth

O-UID = 1337

O-UID = 1337
I-UID = 0

chroot(“/sth”)

O-Uid = 0
Chroot = /sth

execve(“/sbin/su”)

Namespaces #3
● It shrinks the kernel attack surface (the futex problem) minimally only

● It expands this attack surface in some other places

○ Can be avoided by careful setup of namespaces
i. Enable namespaces
ii. Setup chroot, hostname, net etc.
iii. Drop capabilities
iv. Somehow block CLONE_NEWUSER (can be by chrooting)
v. Run sandboxed process

○ firejail, nsjail, minijail0, docker/lxc

Namespaces + Syscall whitelist + resource limits
● Eg: NS + Seccomp-bpf + Cgroups

OS: Eth, Full filesystem root tree, all PIDs, all syscalls, whole memory

Resource
Limits

● memory
● # of pids

NS container
● Some eth
● Some FS tree
● Some PIDs Syscall

whitelist

Payload

KVM
● Direct access to a subset of CPU instructions

○ Many still need to be emulated (attack surface!!)

● If devices or services (printing servers) are simulated (some can be
exposed directly via IOMMU) → attack surface!!

Host CPU

Host kernel (parts of CPU emulation, interrupts, PMU ….)

Payload (e.g. guest VM)

Sandbox :)???Host-side supervisor (monitoring, devices,
filesystems, networking, serial ports….)

Others: Xen, Capsicum, LSM
● Xen

○ Creation of domains: privileged (Dom0) and unprivileged (DomU)
○ Personal opinion: usage declining bc of KVM in Linux
○ Problems: attack surface - non trivial IO API exposed by the Dom0

● Capsicum
○ Working motto: “Practical capabilities for UNIX”
○ Resources as file-descriptors
○ Linux implementation: LSM + Seccomp-bpf

● LSM
○ Yama, AppArmor, SELinux
○ Typically try to limit access to resources (e.g. filesystem paths)
○ Protection of the kernel attack surface doesn’t seem to be priority (the futex problem)

The futex test
Technology Futex test

rlimits, cgroups, chroot, capabilities FAILS

ptrace syscall whitelist PASSES

seccomp PASSES

seccomp-bpf PASSES

NaCL PASSES

LSM FAILS

Capsicum FAILS

KVM / SW Emulators N/A

Conclusions
● Many features shouldn’t be called sandboxes these days

○ chroot, rlimits, capabilities

● Attack surface is what matters
● Not every protection/hardening method is a layer (or, a strong layer)
● There’s no golden bullet: practically all sandboxing Linux kernel facilities

or external projects suffer from non trivial flaws, or hard to overcome
practical problems (e.g. NaCL)

● Combination of a few of those features (if these are solving independent
problems) might actually produce something useful (effective)

● Creating safe and functional sandboxes for Linux is a truly non-trivial job,
where corner-cases are common

Q&A

